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In wireless networks, context awareness and intelligence are capabilities that enable each host to

observe, learn, and respond to its complex and dynamic operating environment in an efficient manner.

These capabilities contrast with traditional approaches where each host adheres to a predefined set of

rules, and responds accordingly. In recent years, context awareness and intelligence have gained

tremendous popularity due to the substantial network-wide performance enhancement they have to

offer. In this article, we advocate the use of reinforcement learning (RL) to achieve context awareness

and intelligence. The RL approach has been applied in a variety of schemes such as routing, resource

management and dynamic channel selection in wireless networks. Examples of wireless networks are

mobile ad hoc networks, wireless sensor networks, cellular networks and cognitive radio networks. This

article presents an overview of classical RL and three extensions, including events, rules and agent

interaction and coordination, to wireless networks. We discuss how several wireless network schemes

have been approached using RL to provide network performance enhancement, and also open issues

associated with this approach. Throughout the paper, discussions are presented in a tutorial manner,

and are related to existing work in order to establish a foundation for further research in this field,

specifically, for the improvement of the RL approach in the context of wireless networking, for the

improvement of the RL approach through the use of the extensions in existing schemes, as well as for

the design and implementation of RL in new schemes.

& 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

In wireless networks, context awareness enables each host to be
aware of its operating environment; while intelligence enables each
host to make the right decision at the right time to achieve optimum
performance. In this article, we advocate the use of reinforcement
learning (RL) (Sutton and Barto, 1998) to achieve context awareness
and intelligence. RL is an unsupervised machine-learning technique
that improves system performance. The phrase ‘unsupervised’
means the machine-learning technique enables a host to learn
knowledge about its operating environment by itself without being
overseen by an external teacher or critic.

The rest of this article is organized as follows. Sections 1.1 and
1.2 provides background and motivation for the application of the
RL approach in wireless networks through the introduction of policy-

based and intelligent-based approaches, respectively. Section 2
discusses traditional RL including state, action and reward, and open
issues in the context of wireless networking. In addition, this section
discusses features that are not used in the traditional RL approach,
and are not widely applied in the wireless networking literature and
yet have great potential for performance enhancement. These are
events, rules, and agent interaction and coordination. Section 3
provides tutorial-based discussions on how problems in wireless
networks, including routing, resource management and dynamic
channel selection (DCS) are solved using RL. Specifically, Section 2
provides discussion on the RL approach; while Section 3 provides
discussion on the application of the RL approach. Section 4 provides
insight into real applications by presenting our recent work on the
implementation of RL for cognitive radio networks. Section 5
discusses open issues in the application of RL approach in wireless
networks. All discussions are presented in a tutorial manner in order
to establish a foundation for further research in this field; specifi-
cally, the improvement of RL in the context of wireless networking,
the improvement of RL in existing schemes, and the design and
implementation of RL in new schemes.

1.1. Policy-based approach

Traditionally, without the application of intelligence, each host
adheres to a strict and static predefined set of rules that is
Fig. 1. The if–then–else predefined policy.
hardcoded. A widely used policy is to define rules through if–
then–else conditional statements as shown in Fig. 1 or express
them in a state–event table. When a host encounters a particular
condition (or state) and an event in the operating environment, it
performs a corresponding action. A state, such as queue size, is
monitored at all times; while an event, such as a call handoff,
happens occasionally and it is detected whenever it occurs. An
example of the policy-based approach is the backoff mechanism
in various medium access control protocols (Bianchi, 2000). The
average backoff period is typically doubled on each successive
transmission attempt due to failed transmission for a particular
packet. A host determines its backoff period without considering
its operating environment such as the number of neighbor nodes
and the channel quality.

A major drawback of the policy-based system is that since
actions are hardcoded, they cannot be changed ‘‘on the fly’’ with
respect to the continually changing operating environment.
Specifically, the relationships between the states, events and
actions are static. Wireless communication is a complex and
dynamic system. For instance, the channels, spectrum usage,
topology and nodal availability are uncertain factors that affect
performance in a complex manner. Hence, a policy-based system
may not be able to cater for all possible states and events
encountered throughout its operation, resulting in suboptimal
performance.

1.2. Intelligent-based approach

An alternative to policy-based approach is to incorporate
intelligence into the system, and it is called the intelligent-based
approach. Intelligence enables each host to learn new states,
events and actions, as well as matching them so that optimal or
near-optimal actions can be taken. The adage ‘‘practice makes
perfect’’ describes the concept of intelligence. While making a
decision on an optimal action is a difficult endeavor, intelligence
approximates ans optimal action, in other words, achieves an
optimal or near-optimal action as time goes by. A host learns
about its actions by evaluating feedback, i.e., the consequences of
executing its actions. Since the traditional policy-based system is
not receptive to feedback, it does not achieve intelligence.
Through learning on the fly, the policy in Fig. 1 evolves with time
in order to approximate an optimal policy. The rest of this section
discusses the necessity of continuous learning in the intelligent-
based approach, as well as introduces RL and its applications in
wireless networks.
1.2.1. Necessity of continuous learning

Continuous learning is necessary so that the policy remains
optimal or near-optimal with respect to the dynamic environment.
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Specifically, there are two main reasons for continuous learning.
Firstly, the operating environment evolves with time such that new
state–event pairs may be encountered, and new actions may be
discovered, hence the policy must be constantly updated to match
the state and event pairs with the optimal or near-optimal actions.
Secondly, network performance brought about by an action for a
particular state–event pair may deteriorate as time goes by, and so
rematching may be necessary. Additionally, it should be noted that
most operating environment in wireless networks exhibit statistical
properties, e.g. traffic load may be a Poisson process; hence, it may
take many trials to learn a policy, so continuous learning may be
necessary.
1.2.2. Reinforcement learning and its applications in wireless

networks

This article applies RL to achieve context awareness and intelli-
gence in wireless networks. RL is a simple and model-free approach,
Features of Reinforc
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and this implies two characteristics. Firstly, RL represents the
performance metric(s) of interest and improves it as a whole, rather
than modeling the complex operating environment. For instance,
instead of tackling every single factor that affects network perfor-
mance such as the wireless channel condition and nodal mobility, RL
monitors the reward resulting from its actions. This reward may be
throughput, which covers a wide range of factors that can affect the
performance. Secondly, RL does not build explicit models of the
other agents’ strategies or preferences on action selection. Further
discussion on advantages of the application of RL in wireless
networks is provided in Giupponi et al. (2010).

Reinforcement learning has seen increasing applications in
wireless networks including mobile ad hoc networks (MANETs),
wireless sensor networks (WSNs), cellular networks, and recently
the next generation wireless networks, such as cognitive radio
networks (CRNs) (Mitola and Maguire, 1999). Context awareness
and intelligence, and hence the RL approach, are imperative to the
successful implementation of CRNs.
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2. Reinforcement learning in the context of wireless
networking

Q-learning (Sutton and Barto, 1998) is the most widely used RL
approach in wireless networks. This section presents Q-learning,
and its overview is presented in Section 2.1, its mathematical
representation in Section 2.2, its flowchart in Section 2.3, as well
as its components and features in Section 2.4. Figure 2 shows the
taxonomy of the features of RL for its application in wireless
networks, and it will be explained in Sections 2.1–2.4.

2.1. Q-learning: an overview

In Q-learning, we represent each host in the network as a
learning agent as shown in Fig. 3. At a particular time instant, the
agent observes a state and an event, as well as a reward, from its
operating environment, performs learning, decides and carries out
an action. The state and event may describe internal phenomena,
which are within the agent, such as instantaneous queue size, or
external to the agent, such as the usage of the wireless medium. The
state and event are differentiated in that the state is monitored at all
times, whereas events happen occasionally and in general are
detected whenever they occur. At any time instant t, the agent
carries out a proper action so that the reward is the maximum
possible in the next time instant tþ1. The most important compo-
nent in Fig. 3 is the learning engine that provides knowledge of the
operating environment through observing the consequences of its
prior action including the state, event and reward. As an example,
the learning engine is used to learn to take the best possible action
under complex channel conditions including channel quality and
channel utilization level. Various kinds of actions can be carried out
Fig. 4. Flowchart of t

Fig. 3. Abstract view of a RL agent in its environment.
by the agent including a message exchange, a backoff mechanism,
and even ‘‘cease to act’’. As time progresses, the agent learns to carry
out a proper action given a particular state–event pair.

In Q-learning, the learnt action value or Q-value, Q(state, event,

action) is updated using immediate reward and discounted reward,
and maintained in a two-dimensional lookup Q-table with size
9(state, event)9x9action9, with 9arg9 being the cardinality of arg. The
immediate reward is the reward received at time tþ1 for an action
taken at time t. For each state–event pair, an appropriate action is
rewarded and its Q-value is increased. In contrast, an inappropriate
action is punished and the Q-value is decreased. Hence, the Q-value
indicates the appropriateness of an action selection in a state–event
pair. At any time instant, the agent chooses an action that max-
imizes its Q-value. The reward corresponds to performance metric
such as throughput. The expected future return is the cumulative
reward that an agent receives in the long run. Since the Q-value
provides an estimate of the present value of the rewards, the
expected future return is discounted to its present value, hence
the term discounted reward.

2.2. Q-learning: mathematical representation

Denote state by s, event by e, action by a, reward by r, learning
rate by a and discount factor by g. A negative reward represents a
cost; thus if reward is maximized, cost is reduced. We refer to cost
as negative reward henceforth. At time tþ1, the Q-value of a
chosen action in a state–event pair at time t is updated as follows:

Qtþ1ðst ,et ,atÞ’ð1�aÞQtðst ,et ,atÞþaðrtþ1ðstþ1,etþ1Þþgmax
aAA

Qtðstþ1,etþ1,aÞÞ

ð1Þ

where 0rar1 and 0rgr1. If a¼1, the agent will forget its
previous learnt Q-value, and replace it with the most recent esti-
mated reward. The higher the value of g, the greater the agent relies
on the discounted reward, which is the maximum Q-value in the next
state–event pair. Unless g¼1 where the discounted and immediate
rewards share the same weight, the discounted reward always has
lower weight than the immediate reward. RL approximates an
optimal policy p that maximizes its accumulated reward or value
function by choosing the action with maximum Q-value as follows:

Vpðs,eÞ ¼max
aAA

Qtðst ,et ,aÞ ð2Þ

An example of the use of discounted reward (or negative reward)
is found in multi-hop routing (Arroyo-Valles et al., 2007). A negative
immediate reward represents the time delay introduced by a
he RL approach.
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particular upstream node (action), while a negative discounted
reward represents the amount of end-to-end delay from an
upstream node choice (action) to a destination (state).

2.3. Q-learning: flowchart

Figure 4 shows the flowchart of the RL approach. At time t, an
agent chooses a subset of actions in adherence to a set of rules

that exclude actions that violate the network requirements. Next,
it chooses either an exploitation action, which is the best known
action derived from its Q-table, or an exploration action, which is a
random action chosen to increase knowledge of the environment.
At the next time instant tþ1, it observes the consequences of its
previous action including the state, event, and reward; and
updates its Q-table and rules accordingly. Further explanation is
given in the next few subsections. In general, to apply RL, these
representations are necessary: 1) state, event, action and reward
and 2) rules. Based on a scheme, some of the representations can
be ignored while still achieving its goals. For instance, the state
representation can be omitted in some RL approaches and these
are called stateless models. Clearly, if an agent’s state never
changes throughout its operation, or the state is comprised of
one entity only, the stateless model can be applied.

2.4. Q-learning: components and features

This section presents the components and features of Q-learning,
namely space representation, exploration and exploitation, rules, as
well as agent interaction and coordination. Table 1 summarizes the
approaches and references for each component and feature.

2.4.1. Space representation

Not all the elements in the operating environment within which
a wireless host resides may be important unless network perfor-
mance can be improved by addressing them. The state, event, action
and reward spaces incorporate the important decision-making
factors of a scheme. The state characterizes the environmental
factors that require constant monitoring; while the event represents
the occurrence of events of particular interest that may happen
Table 1
A summary of components and features of the RL approach.

RL representation/feature Approaches

State Segregate discrete space into small ranges

Improve scalability using Hamming distanc

Improve scalability using neural network

Represent continuous space using Gaussian

Estimate state using POMDP

Exploration and exploitation e-greedy and the softmax approach

Rules Count the number of times an entry is visi

Embed constraints in Q-value to reward an

Lagrangian approach

Reduce the number of entries using dynam

explorations

Agent interaction and

coordination

Embed SARL in base station of centralized

The auction-based approach: embed SARL

The COORD approach: embed SARL in entit

Eliminate stale or outdated entries using d

Single-hop coordination-based MARL: appl

approach

Single-hop coordination-based MARL: appl

Learning (GRL) and Distributed Reward and

Multi-hop coordination-based MARL: exten
occasionally in the environment. For instance, there are many
factors in the operating environment in which a host resides, such
as channel condition (signal-to-noise ratio), number of neighbor
nodes, and queue size; suppose only queue size is an important
factor in a routing algorithm, so the host represents the queue size
as state. Additionally, if call handoff, which happens occasionally,
can affect the rewards, then it can be represented as event.

The variables for the state, event, action and reward can be
discrete or continuous. For discrete space, the variable may
represent an interval of values segregated into smaller ranges
representing different stages or levels as applied in Fu and Schaar
(2009), or may be counter to keep track of the number of
occurrences, or a Boolean representing an occurrence. In a complex
scenario, the space can be too large to be stored in memory or lack
of scalability. To reduce the number of states and events, two states
or events that are close to each other can be merged if the
difference between them is less than a threshold value (Sutton
and Barto, 1998). This difference may take the form of a Hamming
distance (the number of bits at which two state representations
differ). In Galindo-Serrano and Giupponi (2010a), a neural network
approach is applied to represent the Q-values for all combination
pairs of state and action in order to improve scalability; however, a
disadvantage is the requirement of larger number of computational
operations than the lookup Q-table approach. For continuous
space, it provides an added advantage of scalability as the agent
does not keep track of each entry of state-event-action in its
Q-table. An example is called REINFORCE that uses the Gaussian
distribution to generate real-valued actions using the mean and
variance of the state, which is updated using the reward (Vucevic
et al., 2007). However, in Q-learning, it is not possible to represent
continuous space in a tabular format. Future research could be
pursued for effective approximation-based techniques to achieve
continuous space representation. In some scenarios, such as a noisy
environment, an agent may not be able to observe its state clearly,
and a state estimator based on a partially observable Markov
decision process (POMDP) (Littman et al., 1995; Murphy, 2000)
may be applied as in Galindo-Serrano and Giupponi (2010a) to
compute a belief state, which is a probability distribution over the
known states of the environment.
Reference

Fu and Schaar (2009)

e Sutton and Barto (1998)

Galindo-Serrano and

Giupponi (2010a)

distribution Vucevic et al. (2007)

Galindo-Serrano and

Giupponi (2010a)

Sutton and Barto (1998)

ted and violated using counters Yu et al. (2008)

entry negatively if it is violated using the Salodkar et al. (2010)

ic rules in order to decrease the number of Shiang and Schaar (2010)

networks Yu et al. (2008)

in wireless host of centralized networks Fu and Schaar (2009) and

Salodkar et al. (2010)

ies in the operating environment Seah et al. (2007)

ecay model Dowling et al. (2005)

y the Distributed Value Function (DVF) Renaud and Tham (2006)

and Seah et al. (2007)

y the distributed Global Reward-based

Value (DRV) function approaches

Naddafzadeh-Shirazi

et al. (2010)
d the payoff propagation approach Yau et al. (2010c) and

Yau et al. (2010d)
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2.4.2. Exploration versus exploitation

The update of the Q-value in Eq. (1) does not cater for actions
that are never chosen (Sutton and Barto, 1998). Exploitation

chooses the best known action, or the greedy action at all times.
Exploration chooses other actions once in a while in order to
improve the estimates of all the Q-values in the Q-table so that
better actions may be discovered. The balance between exploita-
tion and exploration depends on the accuracy of the Q-value
estimation and the level of dynamic behavior in the environment.
Examples of tradeoff methodologies are e-greedy and the softmax
approach (Sutton and Barto, 1998). In the e-greedy approach, an
agent chooses the greedy action as its next action with probability
1�e, and a random action with a small probability e.

2.4.3. Rules

Q-learning must achieve a high level of reward without
violating the constraints or rules, which can be imposed by the
system requirements (i.e. quality of service (QoS) parameters
such as end-to-end delay and packet dropping probability). Thus,
(state, event, action) entries that violate the rules are marked.
Whenever a state and event pair is encountered, the actions that
violate the rules are prohibited. Following is an example of a
method by which statistical information is collected so that the
rules can be applied to mark (state, event, action) entries as
violations (Yu et al., 2008). The agent keeps track of two counters,
CM
ðs,e,aÞ and CV

ðs,e,aÞ. The CM
ðs,e,aÞ counts the number of times a

particular (state, event, action) is found to violate the rules; while
CV
ðs,e,aÞ counts the number of times the (state, event, action) is

visited. An action becomes illegitimate when the ratio of CM
ðs,e,aÞ to

CV
ðs,e,aÞ is greater than a threshold value. Another approach is to

embed the contraints in the Q-value so that actions that violate
the constraints are negatively rewarded (Salodkar et al., 2010).
This is accomplished through converting a constrained problem
into an unconstrained problem using the Lagrangian approach.

The definition of the rules is dependent on the schemes, and
hence the rules can be static or dynamic. For instance, T(s,e,a) may
be static in order to conform to QoS requirements; or alterna-
tively it may be dynamically adjusted so that the number of
entries is reduced in order to decrease the number of explorations
necessary to approximate the optimal action as applied in Shiang
and Schaar (2010). The illegitimate entries may need to be
explored in the future as they may become legitimate and optimal
actions in a dynamic environment. Future research could be
pursued to investigate types of rules, their objectives and neces-
sities; and the timing and the conditions under which the rules
could be applied.

2.4.4. Agent interaction and coordination

In a wireless network, which uses a shared medium, the
actions of an agent may change the environment experienced
by another agent, and multi-agent RL (MARL) may be necessary.
For instance, if two neighbor hosts access a similar channel in a
multi-channel environment, they share the rewards or transmis-
sion opportunities among themselves and this may result in a
lower level of overall reward. Conflict does not always arise as
actions such as channel sensing may not change the environment,
and so the single-agent RL (SARL) approach may be sufficient. The
SARL approach has been called RL in most of the literature. In this
paper, we use SARL and RL to refer to the single-agent approach,
and MARL to refer to the multi-agent approach. The two types of
RL approaches are:
�

Fig. 5. Abstract view of MARL agents in their environment.
Single-agent reinforcement learning (SARL) (Sutton and Barto,
1998) is suitable to be applied in centralized networks. The
SARL approach, as shown in Fig. 3, can be embedded in the
base station, the wireless host or even entities in the operating
environment. For scenarios with SARL embeded in the base
station (Yu et al., 2008), the base station is the only agent to
learn and take actions that maximize its individual network

performance.
As the size of the state space increases exponentially with the
number of wireless hosts, the SARL approach can be embedded
in each wireless host to make their own action selection,
which is subsequently sent to the base station, in order to
improve scalability and computational efficiency. The base
station makes the final decision on action selection and
broadcasts the outcome to the hosts. Embedding SARL in each
wireless host in a centralized network is called an auction-
based approach and it has been applied in Fu and Schaar
(2009) and Salodkar et al. (2010) with low communication
overheads.
In Seah et al. (2007), an SARL approach called coordinated
(COORD) is applied to the sensing coverage scheme in WSNs to
reduce the power consumption of sensor nodes. The COORD
approach is embedded in some grid points that an agent,
which is the sensor node, covers within a network-wide
region. An agent considers the state of its grid points, con-
solidates the Q-values of the possible actions available, and
subsequently makes a decision on action selection (Seah et al.,
2007).
In a multi-agent scenario (Kok and Vlassis, 2006), SARL may
not achieve stability, specifically, the agents may change their
respective actions frequently, or oscillate between actions, and
fail to achieve an optimal joint action as shown in Gelenbe and
Gellman (2007) and Yau et al. (2010d). Despite its limitation,
the SARL approach has been applied to a number of multi-
agent scenarios and it has been shown to achieve stability in
Niyato and Hossain (2009).

�
 By contrast, multi-agent reinforcement learning (MARL) (Kok

and Vlassis, 2006) is suitable to be applied in distributed
networks where there are multiple agents. The MARL approach
shown in Fig. 5 decomposes a network-wide problem into
components, each of which is solved by a self-organized agent.
In Fig. 5, each host is represented as an agent, and the hosts
share information related to the local rewards among them-
selves so that each of them can evaluate their own action as
part of the joint action in a shared environment (Kok and
Vlassis, 2006). The messages exchanged among the agents can
be piggybacked in the control packets, and they are called
payoff messages. The information exchanged may become
stale as time goes by, and a decay model is applied in
Dowling et al. (2005): the stored values in the absence of
new message exchange are decayed so that outdated actions
are gradually degraded, and not chosen. The joint action is the
combination of actions taken by all the agents throughout
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the entire network, and it converges to optimal or near-
optimal network-wide performance. In other words, the agents
share local rewards among themselves with the objective of
maximizing the global reward in order to approximate an
optimal joint action. The global reward is the sum of local
rewards at each agent. There are two categories of MARL
approaches in terms of the number of hops involved in payoff
message propagation. Single-hop coordination-based MARL

approach requires coordination among agents within one hop
from each other; and Multiple-hop coordination-based MARL

approach requires coordination among agents within multiple
hops from each other. The two categories of the MARL
approaches are shown in the following subsections.
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2.4.4.1. Single-hop coordination-based MARL. Consider a scenario
where an agent chooses an action, whether to sense or not to
sense its environment, based on the action selections of its one-
hop neighbor agents. This approach has been applied in sensing
coverage scheme in WSNs (Seah et al., 2007; Renaud and Tham,
2006) to reduce power consumption of wireless sensor nodes,
which are the agents, in order to increase network lifetime. The
optimal or near-optimal action is achieved when there is the
smallest possible number of sensor nodes sensing several
landmark locations in a sensing field. In Seah et al. (2007) and
Renaud and Tham (2006), a MARL approach called distributed
value function (DVF) is applied and it is described here (Seah
et al., 2007):

Each agent i constantly broadcasts payoff messages to the set
G(i) of its neighbor agents. Each payoff message contains agent i’s
value function or Eq. (2). In other words, using payoff message,
agent i informs agent jAG(i) about the Q-values of itself so that
agent j can consider agent i when agent j is deciding on its own
action. The following equation is applied to update the local Q-
values at each agent i:

Qi
tþ1ðs

i
t ,a

i
tÞ’ð1�aÞQ

i
t ðs

i
t ,a

i
tÞþaðr

i
tþ1ðs

i
tþ1Þþg

X
jAGðiÞ

f iðjÞVj
t ðs

j
tÞÞ ð3Þ

where fi(j) is the weigh factor of agent j’s value function at agent i.
The payoff messages are exchanged among the agents until a fixed
optimal point is reached. During exploitation, the agent selects an
action that maximizes the Q-value following Eq. (2). The action is
part of the joint action that maximizes the accumulated global
reward. In Naddafzadeh-Shirazi et al. (2010), other single-hop
coordination-based MARL approaches, namely global reward-
based learning (GRL) and distributed reward and value function
(DRV), are applied to maximize throughput per transmitted energy
in a cooperative retransmission scheme. The GRL approach updates
Q-value using an approximate value of global reward, which is the
average immediate reward received from an agent’s neighbor
agents; hence each payoff message contains an agent’s immediate
reward or ri

tþ1ðs
i
tþ1Þ. The DRV approach, which is a hybrid of DVF

and GRL, updates Q-value using neighbor agents’ value function
and approximate value of global reward; hence each payoff
message contains an agent’s immediate reward and value function.
The DRV is shown to outperform DVF and GRL since it maximizes
both immediate and discounted rewards. In other words, DRV
enhances short-term and long-term performance.

2.4.4.2. Multiple-hop coordination-based MARL. Consider a multi-
channel scenario where an agent selects its actions, which are the
operating channels, based on the channel selection of its two-hop
neighbor agents. Two hops are considered because these neighbor
nodes are within the interference region of a node. This approach
has been applied to dynamic channel selection in distributed
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CRNs (Yau et al., 2010c, 2010d) to enhance throughput
performance. In Yau et al. (2010c), a stateless model is applied.
The coordination is achieved using an extended payoff
propagation (EPP) mechanism so that the joint action converges
to optimal or near-optimal network-wide performance including
in distributed CRNs with cyclic topology; and fast convergence is
possible. Optimal or near-optimal action is achieved when the
channel selection of all the agents provides the best possible
throughput in the presence of channel contention and channels
with different levels of channel utilization and channel quality in
the licensed users’ spectrum. In Yau et al. (2010c, 2010d)
multiple-hop coordination-based MARL encompasses SARL and
EPP, and it is briefly described next.

A major different between single-hop and multiple-hop coor-
dination-based MARL is that, the single-hop approach uses Q-
values, which are included in the payoff messages from agents
within one hop from each other; and the multiple-hop approach
uses Q-values from agents within multiple hops from each other.
So, each payoff message from agent i contains agent i’s Q-values
and those of its two-hop neighbor agents G(i). The Q-values are
updated using Eq. (1), while the agent selects an action that
maximizes the local payoff gi

tða
i
tÞ:

gi
tða

i
tÞ ¼max

ai AA
Qi

t ða
iÞþ

X
jAGðiÞ

Qj
t,ai ða

j
tÞþ

X
kAGðjÞ

Qk
t,ai ða

k
t Þ

2
4

3
5 ð4Þ

where Qj
t,ai ða

j
tÞ and Qk

t,ai ða
k
t Þ are the Q-values at one-hop and two-

hop neighbor agents, respectively, when agent i takes action ai
t .

The payoff messages are exchanged among the agents until a fixed
optimal point is reached. Future research could be pursued to
further investigate interaction and coordination among the agents.
3. Application of reinforcement learning in wireless networks

Reinforcement learning has been applied in a variety of
schemes, particularly routing, resource management and dynamic
channel selection in wireless networks especially in ad hoc net-
works, cognitive radio networks cellular networks and wireless
sensor networks. This section provides a survey on the perfor-
mance enhancements brought about by the RL approach in
various schemes and various kinds of wireless networks.

Using the RL approach, Table 2 presents performance enhance-
ments compared to traditional approaches (or schemes) in routing.
From the table, performance enhancement of higher throughput
also indicates higher packet delivery rate and lower packet loss rate;
Table 3
Performance enhancements using RL in resource management schemes.

Resource management scheme

Performance
enhancement compared
to traditional approach

Reference

Ad hoc Cellular

Liu

et al.

(2004)

Yagan and

Tham

(2005)

Alexandri et al.

(2002a, 2002b,

2002c)

Chanloha

and Usaga

(2007)

Giup

et a

(200

Lower end-to-end delay �

Higher bandwidth

availability

�

Higher new call arrival rate

Lower blocking probability � �

Higher throughput �

Higher user satisfaction

probability

Lower complexity �

Higher reliability
while higher network lifetime also indicates lower energy consump-
tion. As an example, the RL approach has been applied to provide
lower end-to-end delay in ad hoc networks (Fu et al., 2005; Henkel
and Brown, 2008; Tao et al., 2005; Zaine and Mellouk, 2010), CRNs
(Bing et al., 2009) and wireless sensor networks (Arroyo-Valles et al.,
2007; Liang et al., 2008a, 2008b; Ouferhat and Mellouk, 2009). An
example of traditional scheme is ad hoc on-demand distance vector
(AODV).

Using the RL approach, Table 3 presents performance enhance-
ments compared to traditional approaches (or schemes) in resource
management. From the table, performance enhancement of lower
blocking probability also indicates lower dropping probability; while
higher throughput also indicates higher resource utilization (or
spectrum efficiency) and hence higher total revenue. Note that,
the main objectives of achieving higher throughput are different in
routing and resource management.

Using the RL approach, Table 4 presents performance enhance-
ments compared to traditional approaches (or schemes) in
dynamic channel selection. From the table, performance enhance-
ment of lower blocking probability also indicates lower dropping
probability; higher throughput also indicates higher packet deliv-
ery rate and lower packet loss rate; and lower number of channel
switches also indicates lower number of channel reassignments.

The RL approach has also been applied in other schemes, and
the performance enhancements brought about by RL in those
schemes are summarized as shown in Table 5. From the table,
single link indicates the application of RL at a particular transmis-
sion pair comprised of a transmitter and a receiver, hence it may
be applicable to any kinds of wireless networks.

The rest of this section discusses the applications of RL using
three examples. In general, we describe the objectives of the
scheme and define the state, action, and reward, as well as the
achievements of the RL approach. The first scheme on routing in

MANETs adopts a direct application of the traditional RL approach
and applies rules; the second scheme on resource management in

centralized networks with mobile hosts shows how the events and
rules are applied in addition to the traditional RL approach; and
the third scheme on dynamic channel selection in distributed CRNs

shows how the feature of agent interaction and coordination is
applied in addition to the traditional RL approach.

3.1. Example 1: RL-based routing in mobile ad hoc networks

A MANET is a dynamic and distributed multi-hop wireless
network established by a number of mobile hosts in the absence
Wireless

sensor

poni

l.

8)

Lilith and

Dogancay

(2007)

Martinez-

Bauset et al.

(2008)

Vucevic

et al.

(2009)

Xue

et al.

(2008))

Yu et al.

(2004a,

2004b, 2008)

Saoseng

and Tham

(2006)

�

� � �

�

� �

�



Table 5
A summary of the application of RL in wireless networks.

Scheme Type of wireless
network

Performance enhancement compared to traditional schemes Reference

Cooperative

communications

Ad hoc Higher number of successful packet transmissions per transmitted

power

Naddafzadeh-Shirazi et al. (2009,

2010)

Wireless sensor Higher throughput (or higher packet delivery rate or lower packet

loss rate)

Liang et al. (2009)

Lower end-to-end delay

Rate adaptation Single link Higher throughput Joshi et al. (2008)

Scheduling Cellular Higher throughput Yu et al. (2007)

Lower end-to-end delay

Wireless personal area Lower decoding failure rate Moradi et al. (2007)

Power management Ad hoc Without third-party involvement in power control Long et al. (2007)

Single link Lower number of backlogged packets Vengerov et al. (2005)

Wireless sensor Higher throughput (or lower packet loss rate) per total consumed

energy

Pandana and Liu (2004, 2005)

Udenze and McDonald-Maier (2009)

Lower energy consumption Sridhar et al. (2007)

Security management Ad hoc Higher throughput Lee et al. (2009)

Usaha and Karnkamon (2005)

Usaha and Maneenil (2006)

Queue management Ad hoc Lower packet dropping rate Zhou et al. (2009)

Medium access control Cognitive radio Higher throughput (or lower packet loss rate) Li et al. (2010)

Wireless sensor Lower energy consumption Gummeson et al. (2010)

Higher throughput and lower energy consumption Liu et al. (2006)

Network coding Cognitive radio Higher throughput Chen et al. (2009)

Ad hoc Faster code construction rate Jabbarihagh and Lahouti (2007)

Service discovery Ad hoc Higher average bandwidth savings Gonzalez-Valenzuela et al. (2008)

Table 4
Performance enhancements using RL in dynamic channel selection schemes.

Dynamic channel selection scheme

Performance enhancement
compared to traditional
approach

Reference

Cellular Cognitive radio

Bernardo et al.

(2009a, 2009b)

El-Alfy et al.

(2001, 2006)

Lilith and

Dogancay

(2004)

Tao et al.

(2008,

2009)

Felice

et al.

(2010)

Galindo-Serrano

and Giupponi

(2010b)

Venkatraman

et al. (2010)

Yang and

Grace

(2009)

Yau

et al.

(2010d)

Lower blocking probability � � � �

Higher throughput � � � �

Higher user satisfaction

probability

�

Lower end-to-end delay �

Lower outage probability of

licensed users

�

Lower number of channel

switches

� �
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of fixed network infrastructure. Each host sends and forwards
packets from its neighbors to upstream neighbors until the destina-
tion is reached. The objective is to maximize the proportion of
packets successfully transmitted to the destination from the source
in order to mitigate end-to-end errors caused by packet drop and
buffer overflow. The work of Arroyo-Valles et al. (2007) is an
example of RL-based routing, and it is discussed in this section.
Similar RL-based routings are Shiang and Schaar (2010), Chang et al.
(2004) and Dong et al. (2007).

In general, there are two main challenges faced by a node (or
agent) to choose its upstream neighbor node (or action). Firstly,
routing overhead, which conveys the information about a path,
must be minimized to alleviate congestion. Secondly, with
reduced routing information, there is partial observability. This
means that when making an end-to-end routing decision, a node
can only rely on messages received from its neighbor nodes.
3.1.1. Reinforcement learning model

A node chooses its upstream node based on the Q-values that
are accumulated along a path. The Q-value is the cumulative link
costs of a path, such as end-to-end delay. Traditional routing
protocols that use minimum hop counts as a metric would have
each link cost equal to one. The RL approach conveys the quality
of a path, such as queuing delay and link reliability, using a Q-
value. The SARL approach is applied. The state, action and reward
representations are described below.

State: a node represents each of its destination nodes as a
state. This is normally an entry in the routing table.
Action: a node represents all of its possible next hops for relay
of a received packet as a set of actions. Thus, the cardinality of
the set of actions equals the number of the node’s adjacent
neighbors.
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Reward: a node represents the expected end-to-end delivery
time as the Q-value. Higher negative Q-value indicates shorter
estimated end-to-end delay; higher negative immediate
reward indicates shorter estimated queuing delay at a node
itself; higher negative discounted reward indicates shorter
end-to-end delay from upstream neighbor to destination.

Eqs. (1) and (2) are applied in this approach. The Q-value Q(state,
action) represents the estimated amount of end-to-end delay in
order to transmit a packet to the destination state through a next
hop action. The event in Eq. (1) is not represented. A node chooses its
next hop with the highest Q-value that provides the minimum
amount of end-to-end delay to the destination. This maximizes the
proportion of packets successfully transmitted to the destination
through avoiding unreliable links, dropped packets and buffer
overflows or congestion throughout the path.

An important requirement is to select a route that fulfills a
flow’s QoS requirement, which is achieved using rules. For
instance, only routes with Q-value greater than a threshold that
provides the maximum allowable end-to-end delay are chosen as
the candidate paths. To ensure link reliability, two nodes become
’practical’ neighbors only if the delivery probability between them
is above a predefined threshold. The delivery probability can be
approximated based on the signal strengths or statistics, which
can be estimated using the number of messages sent and received
between the nodes.
3.1.2. Achievements of the RL model

Applying RL in routing has been shown in Arroyo-Valles et al.
(2007), Chang et al. (2004) and Dong et al. (2007) to improve
network performance such as providing a lower end-to-end delay
for packet and a lower packet loss rate compared to traditional
routing schemes such as ad hoc on-demand distance vector (AODV).
3.2. Example 2: RL-based resource management in centralized

mobile networks

A centralized mobile network is a centralized single-hop
wireless network established by fixed network infrastructure,
such as a base station. A host moves from one cell to another,
resulting in bandwidth fluctuation and scarcity within a base
station. Yu et al. (2008) use RL applied to the provision of adaptive
multimedia services in centralized networks with mobile hosts,
and this approach is discussed in this section. The objective is to
maximize network utilization, and hence revenue, by admitting
new calls without jeopardizing the QoS of existing ongoing calls.
There are two components in the scheme, namely, bandwidth
adaptation, which adjusts the bandwidth allocation of individual
ongoing calls, and call admission control, which decides whether
to admit or reject new and handoff calls.

There are a number of service classes associated with each call.
Within each class, there are a number of discretized bandwidth
levels that bandwidth adaptation can choose from for a particular
call. A call is served with un-degraded service if it is allocated
with the highest bandwidth level within its service class. Differ-
ent service classes and bandwidth levels generate different
amount of revenue. During congestion, call admission control
rejects calls and/or bandwidth adaptation degrades the band-
width level of the calls. When a call releases its allocated
bandwidth due to call completion or handoff to another cell,
bandwidth adaptation increases the bandwidth level of its
ongoing calls. To maintain the QoS of ongoing calls, handoff calls
are given higher priority than new calls.
3.2.1. Reinforcement learning model

The main task is to determine whether a call from a particular
service class is accepted and which call(s) should have their
bandwidth changed. The RL approach is embedded in each base
station. The SARL approach is applied. The state, event, action and
reward representations are described below:

State–event pair: the state is the number of each type of
ongoing call in a cell. For example, xij represents the number
of ongoing calls of service class i using bandwidth bij in a cell.
The possible events are a new call arrival, a handoff call arrival,
a call termination, and a call handoff to a neighboring cell.
Action: there are three types of actions. Firstly, the admission
action accepts or rejects a new or handoff call. Secondly, the
set of actions of bandwidth degradation when a call is

accepted is represented as dn
ði,jÞ

n o
. The dn

ði,jÞ indicates the

number of ongoing calls of service class i using bandwidth bij

being degraded to bin. Thirdly, the set of actions of bandwidth
upgrade when a call is terminated or there is a handoff to a
neighboring cell is represented as fun

ði,jÞg. The un
ði,jÞ indicates the

number of ongoing calls of service class i using bandwidth bij

being upgraded to bin. The state variable xij must be updated
after performing the action.
Reward: the reward is the total revenue or reward rate
generated by the ongoing calls from all service classes using
different levels of bandwidth minus the cost of signaling
overhead, which consumes bandwidth and energy, during a
sojourn time. The sojourn time is the duration between
decision epochs when changes of state or event occur.

The base station applies Eq. (1) to update the Q-value, where
Q(state, event, action) represents the estimated revenue of ongoing
calls when an action is taken given a state–event pair. It chooses
the action with the maximum Q-value to maximize its revenue
following Eq. (2).

Several rules are imposed to achieve a certain level of QoS.
Firstly, the total amount of bandwidth consumption within a cell
must be less than the channel capacity. Secondly, the handoff
dropping probability must be less than a certain threshold.
Thirdly, the proportion of ongoing calls that receive un-degraded
service must be greater than a particular threshold.

3.2.2. Achievements of the RL model

Applying RL has been shown in Yu et al. (2008) and Alexandri
et al. (2002a) to improve several network performance metrics
such as the amount of reward for different levels of new call
arrival rate at each cell compared to existing schemes such as the
Guard Channel scheme (Yu et al., 2008), and hence increases the
revenue of the network operator, potentially optimizing return on
investment.

3.3. Example 3: RL-based dynamic channel selection in distributed

cognitive radio networks

Traditional static spectrum allocation policies grant each wireless
service exclusive usage of certain frequency bands, leaving several
bands unlicensed, such as the industrial, scientific, and medical
(ISM), bands for general purposes. The tremendous growth in
wireless applications that utilize the unlicensed frequency bands
has caused spectrum scarcity in those bands. Cognitive radio (CR)
(Mitola and Maguire, 1999) enables unlicensed spectrum users or
secondary users (SUs) to exploit underutilized licensed spectrum (or
white space) to optimize the utilization of the overall radio
spectrum conditional on the interference to the licensed spectrum
users or primary users (PUs) being below an acceptable level.
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The white space is defined by time, frequency and maximum
transmission power at a particular location. To alleviate collision
with PU transmissions, using CR, data packets are allocated oppor-
tunistically to white space at different channels by changing
transmission and reception operating channels.

The objective of the DCS scheme (Yau et al., 2010d) is to
maximize the probability of successful packet transmission, and
hence throughput, for each SU transmission pair in distributed
CRNs. Some RL-based DCS schemes are described in Tao et al.
(2008) and Yang and Grace (2009). A distributed CRN is a
distributed single-hop wireless network established by a number
of SU transmission pairs in the absence of fixed network infra-
structure. The probability of successful packet transmission is
dependent on many factors including the PU channel utilization
level and packet error rate in the channel.
3.3.1. Reinforcement learning model

The main task for a sender SU is to choose a channel that
maximizes the probability of successful packet transmission for
data transmission. The multiple-hop coordination-based MARL
approach is applied. The state, action and reward representations
are described below:

State: a sender SU represents each of its neighbor nodes, such as
their respective identification number, by a state. Hence, a SU
sender can choose a different action for a different neighbor SU.
Action: the action is to choose an available channel out of a set
of operating channels.
Reward: the reward is throughput; specifically, it is the
number of successful data packet transmission achieved by a
SU transmission pair within an epoch. Data packet transmis-
sion is successful when a link layer acknowledgment is
received for a data packet sent. Throughput level is chosen
as the reward because it is a good measure of contention level
in addition to PU channel utilization level and channel quality.
For instance, high levels of reward indicate low levels of
contention and vice versa. To further explain the concept,
consider a situation where all the SU pairs choose a similar
data channel with low PU channel utilization level but high
channel quality for data transmission. The Q-value of the
chosen channel for all the SU pairs would be low due to high
contention level.

Each SU transmission pair applies Eq. (1) to update the
Q-value, where Q(state, action) represents the estimated through-
put of a chosen channel. It chooses the action with the maximum
Table 6
A summary of the application of RL in wireless platforms.
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local reward using Eq. (4) to maximize network-wide throughput.
As each agent does not include its own historical Q-value in its
local reward computation, the local reward does not increase
without bound in a cyclic topology (Yau et al., 2010c).

3.3.2. Achievements of the RL model

Applying multiple-hop coordination-based MARL has been shown
in Yau et al. (2010d) to increase network-wide throughput and
decrease the number of channel switches compared to the traditional
SARL approach. The number of channel switches is an important
criterion for reducing transmission delay and energy consumption.
4. Implementation of reinforcement learning in wireless
platforms

This section provides a summary of RL implementations in
wireless platforms, as well as a case study on an implementation
in CR platform.

4.1. A summary of implementations

There is a limited research in the literature regarding the
implementation of RL in wireless platform. Table 6 provides a list
of references for various types of schemes in wireless networks,
their respective type of network as well as the wireless platform
that the scheme is applied, and the important performance
enhancement brought about by the RL approach.

4.2. Implementation of reinforcement learning in cognitive radio

platform: a case study

This section shows a case study on our implementation of a
RL-based DCS scheme in the GNU radio platform (GNU Radio),
and it is presented in Yu et al. (2010). A centralized CRN is a static
and centralized single-hop wireless network established by fixed
network infrastructure, such as a base station and static hosts.
One of the major concerns of the RL approach is the convergence
of the Q-value for each action in practice, and successful conver-
gence is demonstrated in this section. Without convergence, the
Q-values will fluctuate, and hence the optimal action will change
from time to time. The objective of the DCS scheme is to maximize
the probability of successful packet transmission, and hence
throughput in static and centralized CRNs. Note that we discussed
a RL-based DCS scheme for distributed CRNs in Section 3.3. The rest
of this section provides discussions on the RL model of the DCS
scheme, its implementation and the details of the implementation.
mance enhancement

probability of successful packet transmission, and hence higher throughput in

nd centralized CRN compared to random approach. The RL approach achieves

alytical and expected network performance

ed adaptive link layer switches between radios depending on which radio offers

network performance, and it has been shown to provide lower energy

ption per successful packet transmission, percentage of packet loss, and

tive energy consumption compared to existing radios in CC2420 and XE1205,

tively

mean opinion score and peak signal-to-noise ratio compared to traditional rate

l algorithm scheme, namely H.264

ARL approaches are applied, namely OptDRL and DVF. OptDRL provides

ratively higher degree of application-level performance, particularly higher

g coverage; while DVF provides comparatively lower energy consumption
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4.2.1. Reinforcement learning model

The state and action representations are similar to the RL
approach for a distributed CRN in Section 3.3, and the reward
representation for centralized CRNs is described below. The
difference in the reward representation is due to the fact that,
in centralized networks, it is not necessary to consider agent
interaction and coordination, such as the effects of channel
contention level, since there is a single agent only, which is the
base station or the SU sender.

Reward: For every successful data packet transmission, there is
a reward with positive constant value, otherwise a negative
reward with negative constant value is incurred.

At each attempt to transmit a data packet, the SU sender
chooses a channel for data transmission. The channels have
different levels of PU channel utilization. Eq. (1) is rewritten as
follows:

Qtþ1ðatÞ’ð1�aÞQtðatÞþartþ1ðatÞ ð5Þ

with the maxaAA Qtðstþ1,aÞ in Eq. (1) being omitted to indicate no
dependency on the discounted rewards. The events and rules are
not represented. It is assumed that there are two SUs, a sender
and a receiver, to represent a centralized network. Hence, the
state is not included in Eq. (5) as there is a single SU receiver only.
A thorough investigation of scenarios involving multiple SU
receivers is provided in Yau et al. (2010a). Similar trends are
observed in state representation with single SU and multiple SUs,
so the work shown in this section chooses to implement the
scenario with a single SU receiver.

4.2.2. Implementation of the reinforcement learning model

The SU sender always has backlogged data ready to transmit.
Both sender and receiver can communicate with each other using
a channel chosen from the set of available channels. The PU traffic
in each channel follows a Poisson process. There are three
available channels at different frequency bands. An initial Q-value
set of [0, 10, 5] indicates that channel 1, 2 and 3 are initialized to
values 0, 10 and 5, respectively. A PU channel utilization level set
of [0.9, 0.7, 0.2] indicates that channel 1, 2 and 3 have PU channel
utilization levels of 0.9, 0.7 and 0.2, respectively.

Figure 6 shows that, using the initial Q-values of [0, 10, 5] and
PU channel utilization levels of [0.9, 0.7, 0.2], the Q-values of the
0 100 200 300 400 500 600 700 800 900 1000
−6

−4

−2

0

2

4

6

8

10

12

14

SU Transmission Attempt Number

Q
−V

al
ue

Ch1, Median (Expt)
Ch1, Analytical
Ch2, Median (Expt)
Ch2, Analytical
Ch3, Median (Expt)
Ch3, Analytical

Fig. 6. Channel Q-values against number of SU transmission attempts (Yu et al.,

2010). Both experimental and analytical results are shown.
SU sender converge to certain values, hence making it possible for
the RL approach to choose an optimal action as the number of SU
transmission attempts increases. It is shown that the optimal
action, which is channel 3, reaches the highest Q-value within the
first 10 attempts. In Yu et al. (2010), it is also shown that the RL
approach achieves significant throughput enhancement com-
pared to the random approach, where the channel for data
transmission is chosen randomly without learning.

4.2.3. Implementation description of the reinforcement learning

model

To show how the RL approach works, we choose to explain the
update of Q-value for channel 3, which Q-value is initialized with
value of 5. When the SU sender chooses channel 3 to transmit a data
packet to its receiver, the Q-value for this channel is updated. If a
link layer acknowledgment is received for the data packet sent,
using Eq. (5) with a¼0.2, reward of 15, and negative reward of –5,
the update of the Q-value Qt(3) is Qtþ1(3)’0.8�5þ0.2�15¼7,
otherwise the transmission is unsuccessful and the update of the Q-
value is Qtþ1(3)’0.8�5þ0.2� (�5)¼3. The Q-values are updated
for every data packet transmission subsequently for the chosen
channel during exploitation and exploration.
5. Open issues

In Section 2, we discussed possible future research directions
relating to each element in the RL approach. This section discusses
several open issues that can be pursued so that the application of RL
can be extended to a wider range of schemes and to improve
existing schemes that adopt the RL approach. Some open issues are:
�
 Adaptation to an operating environment that undergoes abrupt

changes. Q-value provides an estimate of the reward for each
action taken. As time goes by, the estimation improves so that an
optimal action can be chosen. The learning rate a determines
how quickly an agent adapts to the environment, with a¼1
replacing the learnt Q-value with the most recent estimated
reward. In wireless networks, the environment may change
abruptly. For instance, nodes may move in random directions
at different speeds, may move out of range from each other, may
be switched on and off, or an obstacle may exist. Thus, the level
of a may be adjusted dynamically, and new events may be
designed to detect occurrences that change abruptly so that
appropriate action can be taken. For example, in MANETs, a
mobile node may appear and disappear at any time so a rule is
required to detect this event and set the Q-value to infinity when
out of range and to an initial value when the node is in range.

�
 Effects of exploration on stability. In a multi-agent environment,

exploration can contribute to instability since the agents
switch their respective action from time to time. For instance,
in the DCS scheme in distributed CRNs, exploration may cause
a SU node pair to switch its operating channel constantly.
There are two reasons for this. Firstly, when several agents
explore at the same time, the Q-values become unstable and
they do not portray the correct condition of the operating
environment. For instance, in distributed CRNs, when two
agents (SU node pairs) explore a particular action (channel),
the Q-value (throughput) for the channel reduces for all agents
and does not portray the exact level of contention (Yau et al.,
2010b). Secondly, an agent that explores a particular action,
and then exploits the other one in the following epoch causes
the Q-values of both actions in itself and its neighbor agents to
fluctuate. Adopting the assumption of a single collision domain
in which all the agents can hear each other or within
the communication range of each other, the RL approach in
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Yau et al. (2010b) ensures an agent explores and updates its
Q-values at the right time, and this has been shown to improve
network stability by reducing the number of channel switches.
The scenario that does not apply the assumption of a single
collision domain remains an open issue.

�
 Achieving short-term network performance enhancement. The

single-agent and multi-agent approaches provide long-term
performance enhancement, but short-term enhancement
(Barrett et al., 2002) may be necessary. For example, through-
put and delay performance enhancement may need to be
achieved in a short time frame to provide QoS guarantees to
high priority data packets. Another example is the DCS scheme
in distributed CRNs. Since there are many SUs competing for
the data channels, short-term fairness may be necessary to
provide fair throughput among the SUs.

�
 Model-based single-hop and multiple-hop coordination-based MARL.

Model-based RL builds and constantly updates an internal model
of the operating environment such as state transition probability
for each possible pair of states, and makes decisions on action
selection based on the model. The purpose is to improve the
convergence rate to an optimal or near-optimal joint action.
However, the drawbacks are computation complexity and higher
memory requirement for storage of the model, especially as the
number of states increases. In Dowling et al. (2005), Fu and
Schaar (2009), Littman et al. (1995) and Shiang and Schaar
(2010), an agent builds a state transition model using statistical
information, such as the number of packets required for a
successful transmission to its next hop (Dowling et al., 2005),
and number of times a state transition of si

t to si
tþ1 occurs when

action ai
t is taken (Fu and Schaar, 2009; Shiang and Schaar, 2010).

Additionally, in Shiang and Schaar (2010), the immediate reward
ri

tþ1ðs
i
tþ1Þ, which is the queueing delay at agent i itself, may be

estimated and computed based on the M/G/1 queuing model.
Instead of updating the Q-value for a single state–action pair of
the traditional RL approach, Q-values for any state–action pairs
are updated based on the estimated state transition probability
and immediate reward in Shiang and Schaar (2010), and this has
been shown to enhance the convergence rate. Future research
could be pursued for other models, and to address the
drawbacks.

�
 Achieving stable Q-values. This includes detecting and respond-

ing to any fluctuations in the Q-values due to unforeseen
circumstances. This enables the Q-values to converge to
optimal or near-optimal action in single-agent and multi-
agent approaches.

�
 Effects of irrational agents on learning outcome. In a multi-agent

environment, several irrational agents, which may be caused
by low residual energy or other factors, that take suboptimal
or random actions may result in instability throughout the
network. The irrational agents may affect the learning out-
come of the rational agent. New events may be designed to
detect and respond to irrational or malicious agents so that
appropriate action can be taken as soon as possible.

�
 Achieving heterogeneous learning environment. In a multi-agent

environment, each agent may represent the Q-values with
different performance metrics in a particular network to
enable heterogeneous learning objectives. As long as the
optimal or near-optimal global Q-value is achieved, all agents
may achieve their respective objectives.
6. Conclusions

In this article, we advocate the use of reinforcement learning
(RL) to achieve context awareness and intelligence in wireless
networks. In general, context awareness and intelligence enable
each host to observe, learn, and respond appropriately in an
efficient manner with respect to its complex and dynamic
operating environment without adhering to a strict and static
predefined set of rules. This capability is of paramount impor-
tance for general functionality and performance enhancement in
various kinds of wireless networks including mobile ad hoc
networks, wireless sensor networks, and the next generation
wireless networks such as cognitive radio networks. RL has been
successfully applied to routing, resource management, dynamic
channel selection and other network functions demonstrating
significant performance enhancement. RL has been shown to
achieve performance enhancement for dynamic channel selection
both in simulation and real implementation on a cognitive radio
network platform. Hence, RL is an effective approach for achieving
context awareness and intelligence in wireless networks. Through
the definition of some optional elements including state, action

and reward, RL is a suitable solution for many problems in
wireless networks. Existing schemes that apply RL can be further
enhanced using additional features not used in traditional RL
including events, rules, and agent interaction and coordination. Two
kinds of RL approaches are single-agent RL and multi-agent RL
(MARL). Two categories of MARL are single-hop coordination-
based MARL and multiple-hop coordination-based MARL. Cer-
tainly, there is a great deal of future work in the use of RL
including the designs of events and rules, and multi-agent
approaches, as well as the open issues raised in this paper.
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